Más allá del determinismo: epigenética, libertad y responsabilidad social
Resumen
La epigenética ha transformado la comprensión de cómo los factores ambientales y sociales influyen en la biología humana sin alterar la secuencia del ADN. Este trabajo revisa la evolución histórica del concepto, los mecanismos epigenéticos centrales, metilación del ADN, modificaciones de histonas y ARN no codificante, y su papel en la regulación génica, la plasticidad neuronal y el desarrollo. Se destaca cómo las experiencias tempranas adversas (ELA) pueden modificar de forma duradera los sistemas de estrés, la función inmunitaria y los circuitos neuronales a través de mecanismos epigenéticos, aumentando la vulnerabilidad a trastornos neuropsiquiátricos. Al mismo tiempo, se analizan los procesos de resiliencia, la plasticidad epigenética y la posibilidad de reversión parcial de estas marcas mediante ambientes protectores e intervenciones psicosociales. El artículo integra perspectivas de la epigenética social, resaltando la influencia de los determinantes sociales de la salud en el envejecimiento, la enfermedad y las desigualdades intergeneracionales. Finalmente, se discuten las implicancias éticas y conceptuales del determinismo epigenético y la necesidad de enfoques interdisciplinarios para interpretar y comunicar estos hallazgos de manera responsable.
Palabras clave
Texto completo:
PDFReferencias
Aristizabal, M. J., Anreiter, I., Halldorsdottir, T., Odgers, C. L., McDade, T. W., Goldenberg, A., Mostafavi, S., Kobor, M. S., Binder, E. B., Sokolowski, M. B., & O’Donnell, K. J. (2020). Biological embedding of experience: A primer on epigenetics. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23261–23269. https://doi.org/10.1073/PNAS.1820838116
Bambra, C., Gibson, M., Sowden, A., Wright, K., Whitehead, M., & Petticrew, M. (2010). Tackling the wider social determinants of health and health inequalities: evidence from systematic reviews. Journal of Epidemiology & Community Health, 64(4), 284–291. https://doi.org/10.1136/JECH.2008.082743
Belluscio, L. M., Alberca, C. D., Pregi, N., & Cánepa, E. T. (2016). Altered gene expression in hippocampus and depressive‐like behavior in young adult female mice by early protein malnutrition. Genes, 15(8), 741–749. https://doi.org/10.1111/GBB.12322
Berardino, B. G., Chertoff, M., Gianatiempo, O., Alberca, C. D., Priegue, R., Fiszbein, A., Long, P., Corfas, G., & Cánepa, E. T. (2019). Exposure to enriched environment rescues anxiety-like behavior and miRNA deregulated expression induced by perinatal malnutrition while altering oligodendrocyte morphology. Neuroscience, 408, 115–134. https://doi.org/10.1016/J.NEUROSCIENCE.2019.03.027
Boyce, W. T. (2016). Differential Susceptibility of the Developing Brain to Contextual Adversity and Stress. Neuropsychopharmacology, 41(1), 142–162. https://doi.org/10.1038/NPP.2015.294
Cánepa, E. T., & Berardino, B. G. (2024). Epigenetic mechanisms linking early-life adversities and mental health. The Biochemical Journal, 481 10(10), 615–642. https://doi.org/10.1042/BCJ20230306
Cecil, C. A. M., Zhang, Y., & Nolte, T. (2020). Childhood maltreatment and DNA methylation: A systematic review. Neuroscience & Biobehavioral Reviews, 112, 392–409. https://doi.org/10.1016/J.NEUBIOREV.2020.02.019
Chaudhari, P. R., Singla, A., & Vaidya, V. A. (2022). Early Adversity and Accelerated Brain Aging: A Mini-Review. Frontiers in Molecular Neuroscience, 15, 822917. https://doi.org/10.3389/FNMOL.2022.822917
Chung, E., Cromby, J., Papadopoulos, D., & Tufarelli, C. (2016). Social epigenetics: a science of social science? The Sociological Review Monographs, 64(1), 168–185. https://doi.org/https://doi.org/10.1002/2059-7932.12019
Cunliffe, V. T. (2016). The Epigenetic Impacts of Social Stress: How does Social Adversity Become Biologically Embedded? Epigenomics, 8(12), 1653–1669. https://doi.org/10.2217/EPI-2016-0075
Dhingra, R., Nwanaji-Enwerem, J. C., Samet, M., & Ward-Caviness, C. K. (2018). DNA Methylation Age-Environmental Influences, Health Impacts, and Its Role in Environmental Epidemiology. Current Environmental Health Reports, 5(3), 317–327. https://doi.org/10.1007/S40572-018-0203-2
Dudek, K. A., Kaufmann, F. N., Lavoie, O., & Menard, C. (2021). Central and peripheral stress-induced epigenetic mechanisms of resilience. Current Opinion in Psychiatry, 34(1), 1–9. https://doi.org/10.1097/YCO.0000000000000664
Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harbor Perspectives in Biology, 6(1). https://doi.org/10.1101/cshperspect.a018200
Fiorito, G., McCrory, C., Robinson, O., Carmeli, C., Rosales, C. O., Zhang, Y., Colicino, E., Dugué, P. A., Artaud, F., McKay, G. J., Jeong, A., Mishra, P. P., Nøst, T. H., Krogh, V., Panico, S., Sacerdote, C., Tumino, R., Palli, D., Matullo, G., … Zins, M. (2019). Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging (Albany NY), 11(7), 2045. https://doi.org/10.18632/AGING.101900
Förster, J., & López, I. (2022). Neurodesarrollo humano: un proceso de cambio continuo de un sistema abierto y sensible al contexto. Revista Médica Clínica Las Condes, 33(4), 338–346. https://doi.org/10.1016/J.RMCLC.2022.06.001
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews. Genetics, 19(6), 371–384. https://doi.org/10.1038/S41576-018-0004-3
Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. https://doi.org/10.1016/J.CELL.2007.02.005
Levine, M. E. (2020). Assessment of Epigenetic Clocks as Biomarkers of Aging in Basic and Population Research. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75(3), 463–465. https://doi.org/10.1093/GERONA/GLAA021
Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews. Genetics, 3(9), 662–673. https://doi.org/10.1038/NRG887
Li, S., Peng, Y., & Panchenko, A. R. (2022). DNA methylation: Precise modulation of chromatin structure and dynamics. Current Opinion in Structural Biology, 75. https://doi.org/10.1016/J.SBI.2022.102430
Ma, D. K., Marchetto, M. C., Guo, J. U., Ming, G. L., Gage, F. H., & Song, H. (2010). Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience, 13(11), 1338–1344. https://doi.org/10.1038/NN.2672
Martin, C. L., Ghastine, L., Lodge, E. K., Dhingra, R., & Ward-Caviness, C. K. (2022). Understanding Health Inequalities Through the Lens of Social Epigenetics. Annual Review of Public Health, 43, 235. https://doi.org/10.1146/ANNUREV-PUBLHEALTH-052020-105613
McDade, T. W., Ryan, C., Jones, M. J., MacIsaac, J. L., Morin, A. M., Meyer, J. M., Borja, J. B., Miller, G. E., Kobor, M. S., & Kuzawa, C. W. (2017). Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7611–7616. https://doi.org/10.1073/PNAS.1620661114/SUPPL_FILE/PNAS.1620661114.SD02.CSV
McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences, 109(supplement_2), 17180–17185. https://doi.org/10.1073/pnas.1121254109
Meloni, M. (2014). The social brain meets the reactive genome: Neuroscience, epigenetics and the new social biology. Frontiers in Human Neuroscience, 8(MAY). https://doi.org/10.3389/fnhum.2014.00309
Morange, M. (2013). What history tells us XXXII. The long and tortuous history of epigenetic marks. Journal of Biosciences, 38(3), 451–454. https://doi.org/10.1007/s12038-013-9354-3
Müller, R., Hanson, C., Hanson, M., Penkler, M., Samaras, G., Chiapperino, L., Dupré, J., Kenney, M., Kuzawa, C., Latimer, J., Lloyd, S., Lunkes, A., Macdonald, M., Meloni, M., Nerlich, B., Panese, F., Pickersgill, M., Richardson, S., Rüegg, J., … Villa, P. (2017). The biosocial genome? Interdisciplinary perspectives on environmental epigenetics, health and society. EMBO Reports, 18(10), 1677. https://doi.org/10.15252/EMBR.201744953
Nestler, E. J., & Russo, S. J. (2024). Neurobiological basis of stress resilience. Neuron, 112(12), 1911–1929. https://doi.org/10.1016/J.NEURON.2024.05.001
Nilsson, E. E., Sadler-Riggleman, I., & Skinner, M. K. (2018). Environmentally induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 4(2), 1–13. https://doi.org/10.1093/EEP/DVY016
Notterman, D. A., & Mitchell, C. (2015). Epigenetics and Understanding the Impact of Social Determinants of Health. Pediatric Clinics of North America, 62(5), 1227–1240. https://doi.org/10.1016/J.PCL.2015.05.012
Palma-Gudiel, H., Fañanás, L., Horvath, S., & Zannas, A. S. (2020). Psychosocial stress and epigenetic aging. International Review of Neurobiology, 150, 107–128. https://doi.org/10.1016/BS.IRN.2019.10.020
Peña, C. J. (2025a). Early-life stress sensitizes response to future stress: Evidence and mechanisms. In Neurobiology of Stress (Vol. 35). Elsevier Inc. https://doi.org/10.1016/j.ynstr.2025.100716
Peña, C. J. (2025b). Epigenetic regulation of brain development, plasticity, and response to early-life stress. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. https://doi.org/10.1038/S41386-025-02179-Z
Rivera, R. M., & Bennett, L. B. (2010). Epigenetics in humans: An overview. In Current Opinion in Endocrinology, Diabetes and Obesity (Vol. 17, Issue 6, pp. 493–499). https://doi.org/10.1097/MED.0b013e3283404f4b
Rozek, L. S., Dolinoy, D. C., Sartor, M. A., & Omenn, G. S. (2014). Epigenetics: Relevance and implications for public health. Annual Review of Public Health, 35(Volume 35, 2014), 105–122. https://doi.org/10.1146/ANNUREV-PUBLHEALTH-032013-182513/CITE/REFWORKS
Salvochea, M., & Chertoff, M. (2025). Cerebro y resiliencia: bases biológicas, modelos experimentales y estrategias de intervención. Química Viva, 24(1). https://doi.org/10.62167/QV.E0291
Shields, A. E. (2017). Epigenetic Signals of How Social Disadvantage “Gets Under The Skin”: A Challenge to The Public Health Community. Epigenomics, 9(3), 223–229. https://doi.org/10.2217/EPI-2017-0013
Sullivan, A. D. W., Merrill, S. M., Konwar, C., Coccia, M., Rivera, L., MacIsaac, J. L., Lieberman, A. F., Kobor, M. S., & Bush, N. R. (2024). Intervening After Trauma: Child–Parent Psychotherapy Treatment Is Associated With Lower Pediatric Epigenetic Age Acceleration. Psychological Science, 35(9), 1062–1073. https://doi.org/10.1177/09567976241260247
Surget, A., & Belzung, C. (2022). Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Molecular Psychiatry, 27(1), 403–421. https://doi.org/10.1038/S41380-021-01136-8
Tando, Y., & Matsui, Y. (2023). Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. Environmental Epigenetics, 9(1). https://doi.org/10.1093/EEP/DVAD008
Waddington, C. H. (1957). The strategy of the genes (1st ed.) (Routledge).
Xavier, M. J., Roman, S. D., Aitken, R. J., & Nixon, B. (2019). Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Human Reproduction Update, 25(5), 519–541. https://doi.org/10.1093/HUMUPD/DMZ017
Yao, B., Christian, K. M., He, C., Jin, P., Ming, G. L., & Song, H. (2016). Epigenetic mechanisms in neurogenesis. Nature Reviews. Neuroscience, 17(9), 537–549. https://doi.org/10.1038/NRN.2016.70
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2025 Cuarenta naipes

Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.
ISSN 2718-6571 (en línea)
| |
La Dirección no se responsabiliza por las opiniones vertidas en los artículos firmados. | |
| Incluida en: | |
![]() | BASE (Bielefeld Academic Search) Link |
![]() | Latin Rev Link |
![]() | Latindex Directorio Link |
![]() | Directory of Research Journals Indexing (DRJI) Link |




